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The steady state of a system of independent particles which undergo elastic 
collisions can be expressed in terms of the absorption probabilities of the 
associated Markov process. For the slab albedo problem, this representation 
enables the application of probabilistic methods to obtain explicit upper 
and lower bounds on the steady-state density. In particular, the bounds 
prove the 1/L decrease of the steady-state flux as a function of the slab 
width L (Fick's law). 

KEY W O R D S  : Transport equation ; absorption probabilities ; slab albedo ; 
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1. I N T R O D U C T I O N  

Systems of  independen t  part icles  which move by  a combina t ion  of  a s teady 

free flow and a local scat ter ing have been used as models  for  neu t ron  diffusion 
in matter31~ The  purpose  o f  this pape r  is to in t roduce  some probabi l i s t ic  
me thods  which are helpful  in the s tudy o f  some such systems. We consider  the 
par t i cu la r  case where a cons tan t  i so t ropic  flux o f  part icles  is incident  on one 
side o f  a slab, A = {(ql, q2, q3) ~ IR3l 0 ~< qa ~< L}, of  a large thickness L. 
Wi th  t ime,  a s teady state is a p p r o a c h e d  in which the incident  flux and  the loss 
due to part icles  leaving the slab are balanced.  A simple probabi l i s t ic  der iva t ion  
is presented  of  the s teady-s ta te  par t ic le  densi ty  and  the s teady-s ta te  net  flux, 
to the leading orders  in 1/L. 

Commonly ,  (~> such a par t ic le  dynamics  is descr ibed by  the one-speed 
t r a n s p o r t  equa t ion  ( l inear Bo l t zmann  equat ion)  
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(~/~t)~b(q, p, t) = -p .  V~b(q, p, t) 

+ IP[P(q)(fs2 df~' ~,pj(~2'. ~)~b(q, ,pl ~ ' ,  t)-~b(q,p,  t ))  

- (L~b)(q, p, t) (1) 

Here, ~b(q,p, t) is the density of the particles (in phase space) at the time t; 
q ~ A c R 3 is the position, and p ~ ~3 the velocity of a particle (we set the 
mass to one), ~) = P/[Pl ~ $2, and d~ '  is the normalized solid angle measure. 
We assume that the differential cross section ~lpl((2'. ~) d~ '  comes from an 
interaction with static scatterers via a central potential and is therefore 
invariant under rotations. We let ~jpj be normalized to one, 

df~' ejvl(f~', f2) = du crl,~(u ) = 1 (2) 
1 

so that ]PiP(q) is the collision rate. 
To obtain the steady state one has to find a stationary solution of (1) 

with the boundary conditions which describe the incident flux. The quantities 
of most physical interest are then the spatial density in the steady state 
~b(q, p), 

n(q) = f dp ~b(q, p) (3) 

and the steady-state flux 

j(q) = f dp p~b(q, P) (4) 

In fact, the above particle dynamics is proven (2~ to be the low-density 
(Boltzmann-Grad) limit of the dynamics of the Lorentz gas, which is the 
motion of a mechanical particle through static scatterers randomly located in 
space. It was also shown (3~ that for given incident flux the steady state of the 
Lorentz gas converges in the low-density limit to the stationary solution of (1). 

We will use here a probabilistic method to obtain upper and lower 
bounds on the steady state, in particular, to derive the 1/L behavior of the 
steady flux (Fick's law). Usually, problems of this kind are studied by the 
method of singular eigenfunction expansions pioneered by Case (4~ and 
described in detail in Ref. 1. The stationary solution is expanded in eigen- 
distributions of L. The boundary conditions lead then to integral equations 
for the expansion coefficients. Unfortunately, even in the simplest cases, these 
integral equations are rather untractable. (~ In particular, the large-L behavior 
of the steady flux can be obtained only by a formal approximation. Instead, 
we first relate the steady state to hitting probabilities of the Markov process 
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which describes the motion of the particles. These are then estimated using a 
certain martingale, which in physical terms has the following simple meaning. 

The ensemble of particles initially at the specified position with a given 
velocity spreads due to random collisions. The total displacement of the 
ensemble center of mass, in the limit t --~ 0% is, however, finite and is given, 
as a function of the initial data, by the above-mentioned martingale. Its 
relation to the hitting probabilities is a consequence of the conservation law 
expressed by the optional stopping theorem. 

In Section 2 we define the corresponding Markov process more precisely 
and show how its hitting probabilities can be used to express the steady state 
corresponding to a given incident flux. Since this connection is rather general, 
we will use less restrictive assumptions than those just mentioned. In Section 3 
we consider the slab albedo problem and derive, using probabilistic methods, 
bounds on the steady-state density and the steady state flux. 

Similar results may be obtained for more general (non-Markovian) one- 
particle dynamics. A sufficient condition for the 1/L decrease of the hitting 
probabilities for such systems is derived in Ref. 6 using a different proba- 
bilistic method. 

2. S T A T I O N A R Y  STATES A N D  HITT ING PROBABIL IT IES 

The states of the system we shall discuss are described by measures ix on 
the one-particle phase space X = R a x Na. tL may represent the average 
density of particles of a fluid or the statistical distribution of each particle of 
the system. 

The system's time evolution results from an independent motion of its 
particies. These move by a combination of the free flow 

(q, p) ~ (q + pt, p) V e (q, p) e N 

and a local scattering occurring at the rate 0(q), sup o(q) < oo. Assuming 
independence of collisions, the one-particle time evolution is given by a 
Markov process for which the probability that, starting at (q, p), no collision 
occurs up to time t is exp[-f~o ds IP[P(q + sp)]. Given the initial momentum p, 
the scattered momentum is in dp' with probability cr(dp'lp), f e(dp'[p) = 1, 
independent of the time of collision. 

We shall assume that there is an invariant probability measure h(dp) with 
respect to which ~ is absolutely continuous and has the density e(p']p), i.e., 

~(dp'lp) = e(p'lp)h(dp') (5) 

By the invariance of h 

f e(p'lp)h(dp) = p' (6) 1 for h-a.e. 
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and by the normalization 

f a(p'[p)h(dp') = 1 Ea (7) Vp 

Let m be the measure on X" 

m(dx)  = l(dq)h(dp) (8) 

where dx = dq dp and l is the Lebesque measure on R a. Then m is preserved 
by the above process independently of p. 

It is convenient to introduce F, the space of paths whose points are 
piecewise continuous functions ~: ~ -+ X. Each ~(t) is a possible history of a 
particle. The initial state and the time evolution may be described by a 
measure on F. The conditional distribution of y(.), given 7'(0), is described by 
the above process. Choosing the distribution of),(0) to be m, one obtains the 
time-invariant measure P on F. 

The transition probabilities are defined by 

P({~, ~ P]~(0) E dx, ),(t) ~ dy)) = Pt(dYlx)m(dx) for t i> 0 (9) 

and (using the invariance of m) the transition probabilities fit(' 1") of the 
time-reversed process are defined by 

P ( { ~ r [ ~ , ( O ) ~ d x , ~ , ( t ) ~ d y } )  = f f t(dxly ) for t ~< 0 (10) 
i.e., 

Pt(dx[ y )m(dy )  = P_~(dy[x)m(dx) 
The time-reversed process is a combination of the flow (q, p) ~ (q - tp, p)  
with scattering at the rate # ( q ) =  p(q) and the differential cross section 
o(p'[p) = cr(p[p'). 

Let now A be a domain in [~a whose boundary ~A is a finite union of  
smooth manifolds, e.g., a slab. We shall consider the situation in which there 
is a steady flux of particles into A through its boundary. The flux is described 
by a measure v(dy) concentrated on A x Na. Assuming that the particles that 
leave A are prevented from returning there, the time evolution is described 
by the map of measures on A x ~a, tz __+ Ttlz ' 

( r~) (dx)  = P/(dxlz) ~(dz) + as Ps'(dxly) ~(dy) (11) 
x ~d x ~d 

with the modified transition probabilities defined by 

Pt'(dxlz)m(dz) 
= P((y E I'll,(0 ) ~ dz, r( t )  ~ dx, r(s)  ~ A x R a Vs ~ [0, t]}) (12) 

If  the initial measure is finite and if there is no trapping, i.e. for/~-a.e. 
z ~ A  • ~a 

lim Pt'(A • Ra[z) = 0 (13) 
t.-~ czO 
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then Tt converges to the steady state 

g(dx) = ds v(dy) e,'(dx[ y) (14) 
Axed 

[(13) will not be satisfied for z ~ A x {0}.] 
ff may also be expressed in terms of the hitting probabilities of  the 

time-reversed process. This form is useful for our analysis. In order to 
introduce it we need some further notation. 

Let us define a measure r, which gives the flux into A in the invariant 
state m, as the solution of 

L r(dy) ds P~'(dx[y) = P(B(t, dy, dx)) (15) 

for all t t> 0, with 

B(t, dx, dy) = (7' a U[7(0 ) ~ dx and for some s ~ [0, t], 
\ 

U {X-r)} c A • a ' , X - s ) ~ d y c ~ e A  x a'~ 
t~[O,s] ) 

Equation (15) should be viewed as an equation for measures on the uninte- 
grated variables. 

That  a solution to (15) for t = q > 0 is also a solution for t = t~ + t=, 
t2 > 0, follows directly f rom 

fax P~=(dx[z)P~'(dzl y) = P~' '2(dxl y) (16) + 
Ra 

which is implied by the Markov property, and from 

P(B(h + t2, dy, dx)) - e(B(tl ,  dy, dx)) 

r e [ O , t l ]  

[ .  

= | P(B(t2, dy, dz))P~l(dxlz ) (17) 
JA x Nld 

The last equality results from conditioning on {7 ( - t l )  = z}. 
For  the flow introduced above (15) can be solved by letting t --~ 0. The 

solution is independent of  p and is given in terms of the surface measure ,/ 
and the inner normal ~ by 

ffdq dp) = n(dq)h(dp) max(0, h .p) (18) 

Next we define the time of the first exit and the exit distributions for the 
time-reversed process. 
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De f in i t ion  1. For  

7' e (7  ~ F[Y(O) e A x Rla, ~,~.)<o{Y(s)} r A x R d} 

the exit time is 

t*(y') = sup{t/> 0 [ 7 ( s ) e A  • i~a, V s e ( - t ,  0)} (19) 

Definition 2. For  0 ~< t ~< oo the exit distributions for the time- 
reversed process are the measures g(. Ix, t) defined for all x e A • R ~ by 

g(dy[x, t) = P({7 ~ rl (0) ~ dx, 7 ( -  t*) ~ dy, t*(7) < t}) (20) 

We write ~(dy[x)= ~(dy[x, oo). The exit distributions are useful for an 
expression of the steady-state /~ in situations in which the flux measure is 
absolutely continuous with respect to ~-. 

Proposit ion 1. If v << ~, then ~ << m and its density r = d~/dm is 
given by 

r = feA~ e(dylx) ~ ( y )  (21) 

= E [dr [7(-t*)]]  (22) 
! 

where Ex denotes the conditional expectation given that 7(0) = x. 

Proof. Comparing (19) and (20) with (15), we obtain 

-r(dy) ds Ps'(dxly ) = m(dx)~(dy[x, t) 

which, as t ~ 0% converges to 

P oo ffdY)jo ds Ps'(dx[y) = m(dx)g(dylx) 

Therefore, using Fubini's theorem for positive measures, 

fi(dx) = fo~176 ds f~Ax~ v(dY)P/(dxly) 

= r(dy) ,:Is Ps'(dx[ y) ~ (y) 
A x ~ a  

f0 = e(dylx) "~z (y) m(dx) AxR" 

proving (21). Equation (22) follows from the definition of g. [ ]  

(23) 
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3. S T E A D Y - S T A T E  D E N S I T Y  A N D  FLUX 

We shall now return to the setting described in the introduction. The 
particles move in the slab A = {(ql, q2, qa) ff Ra, 0 ~< q3 ~< L}. The scattering 
cross section is elpl(f2'-f~) with the normalization (2). Because of the rota- 
tional invariance, (6) and (7) are satisfied if and only if h is a rotation- 
invariant probability measure. The collision rate is IPlP(q) and it is further 
assumed that p is (a) horizontally homogeneous, i.e., p(q) = p(qa), (b) bounded 
above and below: 0 < a <~ p(q) < b < oo. (We could also accommodate 
other IPl dependences of the collision rate.) 

We consider an isotropic incident flux from below described by the flux 
measure v on the boundary ~A x R 3, 

v(dg dp) = dql dq2 h(dp) max(0, P3) on {q3 = 0} x R 3 

v(dqdp) = 0  on {q8 = L }  x R 8 (24) 

By Proposition 1 the density of the steady state for these boundary conditions 
is given by 

(25) ~b(q, p) = #_ (q, p) 

# , v , ( q , p ) =  #({qa = 0 } •  R3lq, p )  
(L) 

where 
(26) 

is the probability for the reversed process which starts at (q, p) to hit the plane 
{q3 = 0) ({q3 = L}) before hitting the opposite one. 

It may be more convenient to think in terms of the given process rather 
than the time-reversed one. Denoting its exit distribution by g(~)(q, p) we 
have, due to the time-reversal symmetry of the motion, 

#(~,)(q, p) = g, ~)(q, - p )  (27) 

However, in order to keep the origin of terms clear, we shall continue to use 
the time-reversed process. 

The key observation for our estimates of #(~) is that the time-reversed 
process has a convenient martingale, namely: For all t ~< 0 

with 

and 

Ex(f(~,(t))) = f ( x )  (28) 

f (q ,  P) = q~#(q3) - c*(IP[)P3/[Pl (29) 

73 

#(qa) ~ (1/qa) dzp(z )  

r : [ l - � 8 9  f~lduu,~,~(u)] -1 

(30) 

(31) 
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Clearly Ex(lf(~(t))l) ~ el(x) + c2(x)t, with appropriate el(x), e2(x) < co, 
and (28) holds s incef i s  a solution of 

- p .  Vf(q,p) + Iplp(q) 

x (~f d~ '  gt , , (~ '-~)f(q,  IPlff)  - f ( q , p ) } = O  (32) 

In the case of a constant collision rate p, - p- lc~([p])pa/[p[ is the expected 
drift in the q3 direction for particles with initial momentum p, which move by 
the time-reversed process. For purely backward scattering ~(]p[) = �89 and for 
purely forward scattering ~([P]) = ~ .  Since by assumption the differential 
cross section is absolutely continuous with respect to d~, �89 < c~(]p[) < oo. 

Our main result is as follows: 

T h e o r e m .  For the above-defined system the steady-state density, given 
by (21), satisfies 

4J(q,p) - (1 P(qa) q a ~  L-] ~< L1 2~([pl)/7(Z) (33) 

The steady state flux ](q), given by (4), points in the 3-direction and is 
independent of q, j(q) -- (0, 0, j )  and j satisfies 

1 f [pI~([p[) ~< j ~< 1 ~ [p[~(lp]) (34) h(dp) 3IT(L) ~ h(dP) 3[g(L) _ 2c~([pl)/L] 

In particular, for a constant collision rate, o(q) - O, we find that 

lim LjL = ( l /p) (h(dp)  1/3[pl~(]p]) (35) 
L--* oo d 

wherejL denotes the flux for a slab of height L. Thus, Fick's law of diffusion is 
valid for the linear transport (Boltzmann) equation. 

To apply the optional stopping theorem we prove the following: 

Proposition 2. For all x e A x ~a, Px({t* = oo}) = 0. 

Proof. Since p is bounded, a particle which at time t = 0 is in A under- 
goes an infinite, but locally finite, number of collisions in the time ( -  oo, 0). 
Let us denote by tz > t2 > "" the times and by ql, q2 .... the positions of these 
collisions. Let 

= r l (0) = (q, p), ql,..., q, e A} 

Since p is bounded and ]p[ is absolutely continuous, it follows, using the 
Markov property and a geometric argument, that for some �9 > 0 

P=(A,~+~IA,~) ~< 1 - �9 (36) 

independent of n. However, A~+~ ~ A. and thus 
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Px(A,) = Px(A1)P~(A2IA1)... Px(A~IA,~_O <~ C(1 - ~)" (37) 

Therefore 

P~({t* = oo}) = P ~ ( { c ~ ( - t ) ~ A  x Na, Vt /> 0}) 

- _  

P r o o f  o f  t h e  T h e o r e m .  We have Ex(Jf(a(t*))l) < oe and 

lim inf [ [f(a(t))l dPx <~ lim infcPx({t* > t}) = 0 (38) 
t J { t * > t }  t 

by Proposition 2 and since f is bounded on A x Na. Therefore, sufficient 
conditions for the optional stopping theorem (Ref. 7, Theorem 14.12) are 
met. It implies 

f (x )  = Ex(f(7(t*)) (39) 

for all x E A x [~a. Here y(t*) is the exit point on the boundary 0A x R a for 
the time-reversed process. Conveniently enough, fi(c~(t*)) = ~{0, tS(L)} and we 
obtain 

qa#(q3) - ~(]p[)p3/lpl = L~( L)e + (q, p) (40) 

Since by (25) and Proposition 2 

~b(q, p) = 1 - e+(q, p) (41) 

claim (33) follows from (40). 
By the symmetry and the conservation of mass, j(q) = (0, 0, j ) .  Evaluat- 

ing the flux at q = 0 by inserting (41) in (4), we obtain 

j = f h(dp) p j + ( 0 ,  - p )  (42) 

[g+(0, - p )  = 0 forpa < 0]. Read differently, h(dp)pa is the incident flux and 
g+(0, p) = ~+(0, - p )  the fraction of it that leaves through the upperboundary 
(q3 = L}. 

Let j(v) be the steady flux for hv(dp) = (1/4~rv2)f 3([pt - v)dp. Then 
j = f h(dp)j([p]). Integrating (40) with hv(dp) leads to 

L~(L)j(v) = ~w(v) + ~(v) f hv( dp) paEq,p(pa(~,( t* ))/jp[) (43) 

In terms of the exit distributions 

f hv(dp) pa•q,p(pa(y(t*))/]pI ) 

.t h~(dp) pa(pa'/lp'[)~({q8 = O} x dp'[q, p) 

f d ' ' - h~( lv )P3( -pa / ]p  [) ({qa = L} x dp'lq, p ) (44) 
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The first term is the steady flux corresponding to an incident flux measure 
density P3/IPl f rom below, whereas the second term is minus the steady flux 
corresponding to an incident flux measure density -P3/]Pl f rom above. By 
symmetry  both  terms are equal. Therefore, using again constancy o f  the flux, 

0 <~ f ho(dp) p3Lrq,p(p3(~,(t*))/lp[ ) 

2 f hv(dp) p3(ps'/lp[)~({q3 = O} • dp']L,p) 

2 f  hv(dp) pae_(L, p) = 2j(v) (45) ~< 

Combining (43) with (45) yields (34). �9 
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